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Several species of shellfish and finfish of commercial or recreational importance in the Nueces and 

Mission-Aransas Estuaries possess life history patterns that are dependent upon estuaries, whereby 

juvenile members of these species live and mature in these estuary “nurseries”, then migrate to the Gulf of 

Mexico as reproductive adults, releasing their eggs and planktonic larvae in the open ocean. The larvae 

feed, grow and develop in the Gulf of Mexico, but must return back to these estuaries to complete their 

life cycle. These planktonic larvae possess weak swimming skills and are too small to migrate directly 

back into the estuaries under their own power, so they must depend on hydrodynamic and environmental 

signals to selectively ride tidal and meteorologically driven currents back into the estuaries and avoid 

being flushed back out when these currents reverse. Tides are relatively small in the Northwestern Gulf of 

Mexico, and especially for estuaries in South Texas with little inflow of freshwater, meteorological 

forcing over times scales of several days play a significant role in estuarine-shelf water exchanges (Smith 

1978). The Aransas Pass connecting the Nueces and Mission-Aransas Estuaries to the Gulf of Mexico 

was originally a shallow inlet between Mustang and San Jose Islands and it has been dredged to allow 

access for ocean-going vessels to the Port of Corpus Christi. This deeper channel now delivers most of the 

water exchange between the Nueces/Mission-Aransas Estuaries and the Gulf of Mexico, which has 

reduced the flow through other shallow historical passes between these estuaries and the Gulf, causing 

them to fill in with sediments and close unless maintained through dredging (e.g. Fish Pass, Cedar 

Bayou). As a result of historical passes closing due to the already permitted deepening of the Aransas 

Pass, this channel is now the main route available for larvae to recruit from the Gulf to local estuaries. It 

is unclear how additional alterations to the depth of the Aransas Pass and adjacent waters will alter 

hydrodynamics in this channel, or other remaining channels, and affect the recruitment of estuarine 

dependent larvae. Below are several examples of important estuarine species that could be impacted. 

 

Shrimp 

Brown and white shrimp are both estuarine-dependent species and have similar life history stages 

(see Figure below). Adult shrimp migrate out to the open Gulf of Mexico through the narrow passes 

between barrier islands and females spawn their eggs there.  Each female will release between 100,000 

and one million eggs (a in Figure 1) that typically hatch within one day into larvae called nauplii (b in 



Figure 1). Like all crustaceans, these shrimp 

possess exoskeletons, and must shed their external 

shells and molt when they grow. The shrimp larvae 

molt through several additional developmental 

stages: protozoea (c), mysis (d) finally becoming 

postlarvae (e) that are still small (~1/4 inch), 

transparent, weakly swimming and planktonic, but 

begin to more closely resemble adult shrimp. 

Larval shrimp feed on phytoplankton and 

zooplankton, and are dispersed along the coast by 

oceanic currents. The postlarvae are carried 

shoreward by wind-driven currents, and are 

transported along the shore by longshore currents. 

When they approach passes between the Gulf and 

their estuarine nursery grounds they detect the 

presence of the estuary by sensing the lower 

salinity waters from the estuary (Matthews et al., 1991). The detection of estuarine water triggers a 

change in behavior called selective tidal stream transport (Forward et al., 2003), where these small, 

weakly swimming larvae swim up into the water column on flood tides that carry them into the estuary 

when they detect increases in salinity. When ebb tides that would carry them back out of the estuary are 

detected, they swim down towards the bottom where current speeds are slower (Duronslet et al., 1972). 

When they reach areas of the estuary with seagrasses or other structures that help hide them from 

predators, they molt into juvenile shrimp (f) and adolescent shrimp (h) before molting to adults that 

migrate back to the gulf and start the cycles over again (Minello et al., 1989; Rogers et al., 1993). 

 

Blue Crabs 

Blue crabs also spawn in the Gulf of Mexico, and possess a complex estuarine dependent life 

cycle. Spawning females migrate to higher salinities at the mouths of estuaries (Carr et al. 2004, Aguliar 

et al. 2005) to release multiple clutches of larvae known as zoea, which require full ocean salinity to 

develop (Darnell et al. 2009). The planktonic zoea live in the ocean for 4-7 weeks before molting into a 

megalopal stage (Costlow and Bookhout 1959). The megalopae are advected towards estuary mouths by 

wind driven currents (Epifanio 1995) and move farther up estuary with behavioral adaptations that take 

advantage of hydrologic movements, such as tides (Forward et al. 2003). These behavioral responses are 

Figure 1. Estuarine dependent life cycle of brown and white 

shrimp (source: TPWD). 



triggered by physical factors such as changing salinity and turbulence (Welch and Forward 2001), and 

possibly by chemical cues associated with estuaries (Forward and Rittschof 1994). The Texas coast has 

nearly continuous barrier islands separating the Gulf of Mexico from the estuaries, with widely separated 

narrow passes. These limited passes into the estuaries may make larval recruitment an especially 

important component of blue crab population dynamics on the South Texas coast. 

The behaviors that govern blue crab transport via tides are well understood from studies 

performed on the US Atlantic coast. Transport is generally limited to the night, as the chemical signature 

of estuarine waters induces photoinhibition of megalopae activity during daylight, and megalopae only 

actively swim at night when in the estuarine plume. Welch and Forward (2001) experimentally 

demonstrated a mechanism for the transport of blue crab megalopae into Atlantic coast estuaries known 

as selective tidal-stream transport (later reviewed by Forward et al. 2003). Their model proposed that 

megalopae utilize nocturnal flood tides to move up estuaries, and avoid being transported back out to sea 

on the ebb tide through a series of responses to changes in salinity and turbulence: (1) Megalopae swim 

up into the water column in response to increasing salinity and pressure indicating flood tides (2) 

Megalopae remain swimming in response to high levels of turbulence indicating tidal current (3) 

Megalopae descend when turbulence declines during slack tide and  (4) Megalopae are inhibited from 

rising again with the ebb tide by decreasing salinity and pressure. While this model is plausible for 

estuaries on the Atlantic coast that have larger tidal ranges and more consistent freshwater inflows, 

several issues arise when applying this behavior-response model to transport in systems like the Mission-

Aransas Estuary in Texas. In the Gulf of Mexico, tidal ranges are relatively small (Smith 1977). These 

weaker tides may result in rates of pressure and salinity change too low to stimulate a swimming response 

(Tankersley et al., 1995), and move smaller volumes of water than more extreme tides observed on the 

Atlantic. However, recent studies indicate that blue crab megalopae from the Aransas Pass of South Texas 

have adapted to local conditions and are more sensitive to small changes in salinity than megalopae from 

the Atlantic Coast (Bittler et al., 2014). Tidal currents alone may not be enough to transport blue crab 

megalopae into Texas estuaries, and a model of planktonic larval transport for the area has suggested that 

wind forcing by persistent storm-related or onshore winds is a more important process driving transport of 

estuarine dependent larvae (Brown et al., 2005). 

 

Fish species of commercial and recreational importance: spawning aggregations 

The Aransas Ship Channel is the only connection between local bays and estuaries and the coastal 

ocean for tens of miles in either direction. As such, it is a critical area for the movement of fishes between 

these two habitats. The Red Drum (Scianops ocellatus), Southern Flounder (Paralichthys lethostigma), 



Speckled Trout (Cynoscion nebulosus), and Sheepshead (Archosargus probatocephalus) are some of the 

best-known fishes that take advantage of this passageway, and all of these important fishery species do so 

for reasons associated with spawning. While Southern Flounder just pass through, Red Drum, 

Sheepshead, and Speckled Trout (Cynoscion nebulosus) come from miles around to spawn in the channel 

itself. The Aransas Channel and other ship channels like it have recently been identified as crucial multi-

species fish spawning aggregation sites in the Gulf of Mexico (Grüss et al. 2018). Fish spawning 

aggregation sites are massive gatherings of fish for breeding, a behavior shared by many species across 

the globe in many different habitats. Fishes select sites such as the Aransas Channel due to their specific 

physical properties (e.g. geomorphology, currents) (Heyman and Kjerfve 2008), and these areas support 

the fish populations and fisheries of the wider region (Sadovy de Mitcheson and Erisman 2012). 

Spawning aggregations occur at all times of year - in the Aransas Channel, Red Drum form large 

spawning aggregations in mouth of the channel during the fall months (the ‘Redfish Run’) (Holt 2008), 

Sheepshead form large spawning aggregations on the rocky jetties that line the channel in the spring 

(Bolser et al. in prep), and Speckled Trout form spawning aggregations in the channel in the summer 

(Biggs et al. in prep). The predictable presence in time and space of these aggregations facilitates the 

success of Port Aransas’ highly productive fishing industry, which is an indispensable part of the region’s 

economy.  

The effects of short-term physical disturbances such as dredging and longer-term changes such as 

significant deepening of the Aransas ship channel on fish spawning aggregations have not been studied in 

this region. It is likely that the specific geomorphology of the channel has caused fish species to select it 

as an spawning site, and alterations in depth might cause it to no longer be suitable. In addition, disruption 

of the current flow regime could affect the transport of eggs and larvae that result from spawning 

aggregations to the bays and estuaries of the area, which are critical nursery areas for economically-

important sport fishes (Rooker et al., 1998). Therefore, it is of critical importance to fully understand the 

movement, spawning, and larval transport dynamics of fishes in the area before undertaking major 

alterations to this critical habitat and use the information to eliminate or severely reduce any impacts on 

these critical natural resources, and monitor these spawning and larval transport activities before and after 

any significant changes are made.  

 

Fish larval supply and retention in estuaries: role of physical processes 

The supply of larval fishes from the Gulf of Mexico to South Texas estuaries may be controlled 

by circulation through tidal inlets into estuaries (Jenkins et al., 1997). Episodic pulses of high abundances 



of fish larvae in tidal passes are commonly observed for estuarine-dependent fish species (Hettler et al., 

1997). The spatial and temporal variability of both larval abundance and tidal and meteorological 

influenced currents (Smith, 1977, 1979) make it challenging to determine the respective roles of larval 

abundance, hydrodynamics other factors to determine the dominant factors affected recruitment of 

estuarine dependent larval fishes. Efforts to correlate abundances of larval fish with environmental 

variables have proved to be especially challenging (Dixon et al., 1999).  Combining direct observations 

with numerical models of site-specific hydrodynamics and simulated larval transport can aid in 

understanding of the roles of the dominant processes affecting larval recruitment, and can aid in the 

design of field based studies (Werner et al., 1999). 
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